x(2x+2)+5x=3(x^2+2)

Simple and best practice solution for x(2x+2)+5x=3(x^2+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x+2)+5x=3(x^2+2) equation:



x(2x+2)+5x=3(x^2+2)
We move all terms to the left:
x(2x+2)+5x-(3(x^2+2))=0
We add all the numbers together, and all the variables
5x+x(2x+2)-(3(x^2+2))=0
We multiply parentheses
2x^2+5x+2x-(3(x^2+2))=0
We calculate terms in parentheses: -(3(x^2+2)), so:
3(x^2+2)
We multiply parentheses
3x^2+6
Back to the equation:
-(3x^2+6)
We add all the numbers together, and all the variables
2x^2+7x-(3x^2+6)=0
We get rid of parentheses
2x^2-3x^2+7x-6=0
We add all the numbers together, and all the variables
-1x^2+7x-6=0
a = -1; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·(-1)·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*-1}=\frac{-12}{-2} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*-1}=\frac{-2}{-2} =1 $

See similar equations:

| -(x-1)+5=2(x+3 | | x(x+1)+4=2(2x^2+1) | | 10x-8=11x+20 | | 2-9w=-3w-9 | | 10t+24=24 | | X^2+16x+16=16 | | -6c+8=-8c-7 | | 1/8x+2=9 | | x^2+(x+2)(x-3)=0 | | -12x-67=80-5x | | -3n-22=-7(5n-5) | | 16a-12.9=123.1 | | 7(x+2)=15x-14 | | 2×2x+6=14 | | |-7|+y=4 | | 0.3x=+7.9 | | n(6n-7)=0 | | -3(d-3)+2d=1 | | (7x+5)+20x=x | | 3x+5x-4=56 | | 5+2g=-7g-3 | | 2(5w+15-5w+5)=3+3w | | 1/2-x/3=-5/6 | | (7x+5)+60=x | | 1/2-x/3=5/6 | | 7^8x=75 | | 2(4m+7)=46 | | 12-x/3=5/6 | | X+2(5w)=76 | | (7x+5)+60=20x | | n÷+6=(-2) | | x+2=20x+20= |

Equations solver categories